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The Gamma function Γ is one commonly used extension of the factorial
function to the reals (and even complex numbers). In this talk, we will
introduce its p-adic analog according to Morita [1], and prove some of its
properties. We will first recall the real Gamma function through Euler’s
integral, present some properties and show how we can extend it continu-
ously into a function on Zp through interpolation.

1 The real Γ-function

Proposition 1.1 (Euler’s integrals of the 2nd kind).∫ +∞

0

e−ttx−1dt

exists for all x ∈ R>0

Proof. We will proceed in three steps, consider∫ +∞

0

e−ttx−1dt =

∫ 1

0

e−ttx−1dt+

∫ +∞

1

e−ttx−1dt

Step 1: x = n ∈ N>0. ∫ 1

0

e−ttn−1dt <∞

Since for 0 ≤ t ≤ 1 one has that e−t ≤ 1⇒ e−ttn−1 ≤ tn−1 and∫ 1

0

tn−1dt =
1

n

On the other hand, ∫ +∞

1

e−ttn−1dt <∞
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Since for t ≥ 1 one has (by L’Hopital’s rule)

lim
t→∞

tn−1

e
t
2

= lim
t→∞

(n− 1)tn−2

1
2e

t
2

= · · · = lim
t→∞

(n− 1)!

( 1
2 )ne

t
2

= 0

thus for ε = 1, ∃M > 0 such that for all t > M

tn−1 ≤ e t
2 ⇒ tn−1e

t
2 ≤ e− t

2 and

∫ +∞

1

e−
t
2 dt = 2e−

1
2

Step 2: x ∈ R, x ≥ 1. One has bxc ≤ x ≤ bxc+ 1 and for t ≥ 0

e−ttx−1 ≤ e−ttbxc and

∫ +∞

0

e−ttbxcdt <∞ (by Step 1)

Step 3: x ∈ R, 0 < x < 1. We distinguish between two cases.

1. If 0 ≤ t ≤ 1

e−t ≤ 1⇒ e−ttx−1 ≤ tx−1 and as

∫ 1

0

tx−1dt =
1

x

⇒
∫ 1

0

e−ttx−1dt <∞

2. If t ≥ 1
1 ≤ tx−1 ≤ t⇒ e−

t
2 ≤ tx−1e− t

2 ≤ te− t
2

As both

e−
t
2 , te−

t
2 −−−→

t→∞
0 ( L’Hopital again for example)

⇒ tx−1e−
t
2 −−−→

t→∞
0∀x ∈]0, 1[

Again, tn−1e
t
2 ≤ e− t

2 and
∫ +∞
1

e−
t
2 dt = 2e−

1
2 , hence∫ +∞

1

e−ttx−1dt <∞

Now, we are able to define the Γ-function

Definition 1.2. For all x ∈ R>0, we define the Γ-function to be

Γ(x) :=

∫ +∞

0

e−ttx−1dt
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We have the following remarkable property:

Proposition 1.3. For all x ∈ R>0,

Γ(x+ 1) = xΓ(x)

In particular, the Γ-function extends the factorial n 7→ n! to the positive reals.

Proof. An integration by parts gives

Γ(x+ 1) =

∫ +∞

0

txe−tdt = [−txe−t]∞0 +

∫ +∞

0

xtx−1e−tdt

= x

∫ +∞

0

tx−1e−tdt = xΓ(x)

As

Γ(1) =

∫ +∞

0

e−tdt = [−e−t]∞0 = 1

One gets that for x = n ∈ N

Γ(n+ 1) = nΓ(n) = n(n− 1)Γ(n− 1) = · · · = n!Γ(1) = n!

As N is not dense in R, there are many ways one could define the factorial that
would agree on the integers and disagree elsewhere. But the Γ-function happen to
have a property that would make it “the right one”: It is the only log-convex function
that agrees with factorial on the non-negative integers. A function f is said to be
Log-convex if its composition with the logarithm, log ◦ f , is a convex function. Log
convexity seems to be a natural property for a function generalizing the factorial, see
[2].

Among the many applications of the Γ-function is in the study of the Riemann
zeta function. A fundamental property of the Riemann zeta function is its functional
equation:

Γ(
s

2
)ζ(s)π−

s
2 = Γ(

1− s
2

)ζ(1− s)π−
1−s
2

where it specifies the analytic continuation of the zeta function to a meromorphic
function in the complex plane, see [3]. We will cite the following result

Proposition 1.4. The Γ-function satisfies the Legendre relation

Γ(z)Γ(1− z) =
π

sin(πz)

Proof. a proof can be found in [4]§20, Theorem 5.
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2 the p-adic Γ-function, p 6= 2

In this section, p denotes a prime number 6= 2. We will treat the case p = 2 in the
next section. Recall that N is dense in Zp. Given a sequence (an)n≥0 in some field K,
there exist at most one continuous function f : Zp −→ K such that f(n) = an for all
n ∈ Zp.

Proposition 2.1. a sequence (an)n≥0 in K can be interpolated if

∃f : Zp −→ K such that f(n) = an for all n ∈ A, A = Zp.

⇔ ∀ε > 0 ∃N > 0 such that for all n = m+ pN , |f(n)− f(m)| < ε

In other words, if two integers m,n differ by a large power of p, then f(n) − f(m)
gets smaller. Now if an ∈ Z with K = Qp, we want to find a function f : Zp −→ Qp

such that
f(n+ 1) = n! ∀n ∈ N (1)

2.1 Naive approach

At first, one might simply think of taking the function n 7→ n! and extend continuously
to Zp. Indeed suppose there exist a function verifying (1). By continuity and density
of N in Zp, the same holds for all n ∈ Zp. Thus, for a fixed power of a prime pr

f(n) = n(n− 1) . . . prf(pr − 1) ∀n > pr

As Zp is compact, ∃C > 0 such that |f(x)|p ≤ C for all n ∈ Zp. In particular, for
n > pr

|f(n)|p = |n(n− 1) . . . prf(pr − 1)|p ≤ |p|rpC

By density,
||f ||∞ ≤ |p|rpC

If r=1, then if ||f ||∞ = C, one has

||f ||∞ ≤ |p|p||f ||∞ ⇒ ||f ||∞(1− 1

p
) ≤ 0⇒ ||f ||∞ = 0

Hence the only continuous function f : Zp −→ Qp satisfying (1) is f = 0. The issue
here is that

p | (n!)

We need hence to slightly modify the factorial by considering a “restricted” version of
it.
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2.2 The restricted factorial

Consider the “restricted” factorial defined for all n ∈ N

n!∗ :=
∏

0≤j<n
p-j

j (2)

Theorem 2.2 (Willson’s congruence). Let n > 1, n ∈ N

(n− 1)! ≡ −1 mod n⇔ n is prime.

Proof. If n ≥ 3, n is not a prime, then ∃q ∈ {2, . . . , n−2} prime such that q | n. Hence

(n− 1)! ≡ −1 mod n⇒ (n− 1)! ≡ −1 mod q

which is impossible since q | (n− 1)!

We need a generalization of this result:

Theorem 2.3 (Willson’s generalized congruence). Let a ∈ N, r ≥ 1 and p ≥ 3∏
a≤j<a+pr

p-j

j ≡ −1 mod pr

Proof. Let a ≤ j < a+ pr and suppose p - j. The set {a, a+ 1, . . . , a+ pr − 1} forms
a complete set of representatives modulo prZ where the elements j such that p - j
represent the invertible elements. Consider the morphism ϕ : Z � Z/

pr

ϕ(
∏

a≤j<a+pr

p-j

j) =
∏

j∈(Z/pr)×

j =
∏

j=j−1

j =
∏
j2=1

j

since all the other terms j 6= j−1 cancel in the product. Recall that U := (Z
/
n)× is

cyclic for n = pr, p odd, thus it contains a unique non-trivial subgroup of order 2 and
thus ∏

j2=1

j = 1×−1 = −1

and hence ∏
a≤j<a+pr

p-j

j ≡ −1 mod pr

Now back to (2), for m = n+ pr

(n+ pr)!∗ =
∏

0≤j<n+pr

p-j

j = (
∏

0≤j<n
p-j

j)(
∏

n≤j<n+pr

p-j

j) = n!∗(
∏

n≤j<n+pr

p-j

j) ≡ −n!∗ mod pr
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By adjusting one last time the sign, we define the function

f(n) := (−1)n
∏

0≤j<n
p-j

j (3)

Clearly, for m ≡ n mod pr one has

f(m) = f(n+ pr) = (−1)n+pr ∏
0≤j<n+pr

p-j

j = [(−1)n
∏

0≤j<n
p-j

j][(−1)p
r ∏
n≤j<n+pr

p-j

j]

≡ (−1)p
r+1f(n) ≡ f(n) mod pr (as p is odd).

Hence
|f(m)− f(n)|p = p−r −−−→

r→∞
0

Thus the function f : N≥2 → Z can be continuously extended into a function Zp → Zp.

Definition 2.4 (Morita’s p-adic Γ-function). The Morita p-adic Γ-function is the
continuous function

Γp : Zp −→ Z×p
extending

f(n) := (−1)n
∏

0≤j<n
p-j

j, n ≥ 2

Note that the following holds for n ∈ N

Γp(n+ 1) =

{
n! if n odd, n ≤ p− 1
−n! if n even, n ≤ p− 1

(4)

And

Γp(n+ 1) =

{
−nΓp(n) if p - n
−Γp(n) if p | n (5)

By continuity and density, one has

Γp(x+ 1) =

{
−xΓp(x) if x ∈ Z×p
−Γp(x) if x ∈ pZp

Pose

hp(x) =

{
−x if |x|p = 1
−1 if |x|p < 1

Then we get finally
Γp(x+ 1) = hp(x)Γp(x). (6)

We summarize the above results into the following theorem:

Theorem 2.5. For p an odd prime, Γp : Zp −→ Qp is continuous, Γp(Zp) ⊂ Z×p .
Moreover one has for all x, y ∈ Zp:
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1. Γp(0) = 1,Γp(1) = −1,Γp(2) = 1,Γp(3) = −2, . . .

2. |Γp(x)|p = 1.

3. |Γp(x)− Γ(y)|p ≤ |x− y|p.

4. Γp(x)Γp(1− x) = (−1)l(x)

l : Zp → {0, . . . , p− 1}
x 7→ x mod pZp

The three first properties are direct results of what we have seen above, we take a
deeper look at (4).

(4). By density again, we only need to prove it for n ∈ N. Let

f(n) = Γp(n)Γp(1− n)

One has

f(n+ 1) = hp(n)Γp(n)Γp(−n) = hp(n)Γp(n)
Γp(1− n)

hp(−n)
= ε(n)f(n)

Where

ε(n) =
hp(n)

hp(−n)
=

{
−1 if p | n
1 if p - n

Hence
f(n+ 1) = ε(n)f(n) = · · · = (−1)kf(1) = (−1)k+1

where
k = #{0 ≤ j < n, p | j} = n− [n/p]

Now let m = n+ 1, then 1−m = −n and

Γp(m)Γp(1−m) = Γp(n+ 1)Γp(−n) = (−1)n−[n/p]+1

Let n = n0 + n1p+ · · · = n0 + p[n/p], then one has n− [n/p] = n0 + (p− 1)[n/p]. As
p is odd, p− 1 must be even and thus n− [n/p] has the same parity as n0. Hence

Γp(m)Γp(1−m) = (−1)n−[n/p]+1 = (−1)n0+1

as m = n+ 1 ≡ n0 + 1 mod p, n0 + 1 ∈ {0, . . . , p− 1} and n0 + 1 = l(m).

Recall Proposition (1.4) gives for z = 1
2 :

Γ(
1

2
)2 = π and Γ(

1

2
) =
√
π

Hence, in Qp, the analogue of π can be taken to be

Γp(
1

2
)2 = (−1)l(

1
2 )
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where l( 1
2 ) = l(p+1

2 ) = p+1
2 hence

Γp(
1

2
)2 = (−1)

p+1
2 =

{
1 if p ≡ 3 mod 4
−1 if p ≡ 1 mod 4

Thus if p ≡ 1 mod 4, Γp( 1
2 ) is a canonical square root of −1 and one has

Γp(
1

2
) ≡ Γp(

p+ 1

2
) = (−1)

p+1
2

∏
0≤j< p+1

2

p-j

j = (−1)
p+1
2 (

p+ 1

2
)! ≡ −(

p+ 1

2
)! mod p

3 Save the 2-adic Γ-function!

In this section we focus solely on the case where p = 2. As seen before, most of
the results that we used in order to prove the interpolation property of the factorial
relied on results that worked only for odd primes. We will thus reproduce the same
construction with the same arguments using other tools this time. But first we prove
the following result that will make up for Willson’s generalized theorem (2.3):

Proposition 3.1. For r ≥ 3 we have (Z /2r )× ∼= Z /2 × Z /22r−2

Proof. Consider the morphism

φ : (Z /2r )× −→ (Z /4)× ∼= Z /2

x 7−→ x mod 4

As |(Z /2r )×| = ϕ(2r) = 2r−1(2−1) = 2r−1, | ker(φ)| = 2r−2 since ker(φ)∩(Z /2) = {1}.
Hence we only need to show that ker(φ) has an element of order 2r−2. We proceed by
induction: For r = 3 it is trivial, suppose now that

52
r−2

≡ 1 mod 2r

then the order of 5 modulo 2r+1 o(5) = k2r−2 is a multiple of 2r−2, for k = 1, 2 or 4.
If k = 4 then o(5) = k2r which is the order of the group, but since{

(2r − 1)2 = 22r − 2r+1 + 1 ≡ 1 mod 2r

(2r−1 − 1)2 = 22r−2 − 2r + 1 ≡ 1 mod 2r

these two elements of order 2 generate two different subgroups, thus k = 1, 2. Since
52

r−2 ≡ 1 mod 2r one has that

52
r−3 ≡ 1 mod 2r−1

⇒ 52
r−3 ≡ 1 + k2r−1 mod 2r for k = 0, 1.
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if k = 0, then we would have that 52
r−3 ≡ 1 mod 2r−1 ⇒ 2r−2 | 2r−3 which cannot

be true, hence

52
r−3 ≡ 1 + 2r−1 mod 2r

⇒ 52
r−3 ≡ 1 + 2r−1 + k2r mod 2r+1 for k = 0, 1.

We square both sides 52
r−3 ≡ 1 + 2r−1 + k2r mod 2r+1

⇒ 52
r−2 ≡ (1 + 2r−1 + k2r)2 mod 2r+1

⇒ 52
r−2 ≡ 1 + 22r−2 + k22r + 2r + k2r+1 + k2r+1 mod 2r+1

⇒ 52
r−2 ≡ 1 + 2r mod 2r+1

We square again 52
r−1 ≡ (1 + 2r)2 mod 2r+1

⇒ 52
r−1 ≡ 1 + 22r + 2r+1 mod 2r+1

⇒ 52
r−1 ≡ 1 mod 2r+1

Hence, by induction, ker(φ) ∼= Z /2r−2 and thus the result.

Now consider
f(n) := (−1)n

∏
0≤j<n
j odd

j

We know that f(2k + 1) = f(2k) and |f(n)|2 = 1. As Im(f) ⊂ 1 + 2Z we also have
that

|f(m)− f(n)|2 ≤
1

2

Now let m = n+ 2r, where r ≥ 3

f(n+ 2r) = (−1)n
∏

0≤j<n+2r

j odd

j = (−1)n
∏

0≤j<n
j odd

j
∏

n≤j<n+2r

j odd

j = f(n)
∏

n≤j<n+2r

j odd

j

Again, as done before we consider the projection ϕ : Z � Z/
2r

ϕ(
∏

n≤j<n+2r

j odd

j) =
∏

j∈(Z/2r)×
j =

∏
j2=1

j

From Proposition (3.1) we know that there are no non-trivial cyclic subgroup of order
2 in (Z /2r )× hence ∏

j2=1

j = 1⇒
∏

n≤j<n+2r

j odd

j ≡ 1 mod 2r

thus

|f(m)− f(n)|2 =
1

2r
−−−→
r→∞

0

We still need to handle the case r = 2:

f(2n+ 2) = f(2n+ 1) = (2n+ 2)f(2n) = 2nf(2n) + f(2n)
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⇒ |f(2n+ 2)− f(2n)|2 = |2nf(2n)|2 = |2n|2 ≤ |2|2 =
1

2

Similarly,

f(2n+ 4) = f(2n+ 3) = (2n+ 3)f(2n+ 2) = 2nf(2n+ 2) + 3f(2n+ 2)
= 4n2f(2n) + 8nf(2n) + 3f(2n)

⇒ f(2n+ 4)− f(2n) = 4n2f(2n) + 8nf(2n) + 2f(2n)
≡ 2f(2n) mod 4

Thus

|f(2n+ 4)− f(n)|2 = |2f(n)|2 = |2| = 1

2

As f([2n+ 1] + 4)− f(2n+ 1) = f(2n+ 4)− f(2n), one finally has, by density again,
that

|f(m+ 4)− f(m)|2 =
1

2

Hence, by density and continuity, one finally has that ∀x, y ∈ Z2

|f(x)− f(y)|2 ≤ |x− y|2

The function f can be continuously extended to the function Γ2 : Z2 −→ Z×2 ∼= 1+2Z2.
Hence Definition (2.4) holds for every prime p now. By definition one has similarly as
the odd case (6):

Γ2(x+ 1) = h2(x)Γ2(x). (7)

where

h2(x) =

{
−x if x ∈ 1 + 2Z2 (|x|2 = 1)
−1 if x ∈ 2Z2 (|x|2 < 1)

Remark 3.2. Theorem (2.5) holds exactly the same for the case p = 2, except a slight
change in (3): ∀x, y ∈ Z2

|Γ2(x)− Γ(y)|2 ≤ k|x− y|2 where k =

{
1 if |x− y|2 < 1

4
2 if |x− y|2 = 1

4
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